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The natural frequencies and mode shapes of a composite rectangular membrane with no
exact solutions are found by using an analytical method appropriate for the geometric
feature of the title problemmembrane presented here. The method has a key feature in which
the theoretical development is very simple and only a small amount of numerical calculation
is required. Example studies show that the natural frequencies and their associated modes
obtained from the method are found to be very accurate compared with the results by the
FEM (S>SNOISE) or exact solutions. Furthermore, the natural frequencies converge
rapidly and accurately to the exact values or the numerical results obtained from the "nite
element model using meshes su$cient to yield already converging natural frequencies, even
when a small number of series functions are used in the proposed method.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

In the free vibration analysis of membranes, there have been many examples attempted in
solving a non-homogeneous membrane of simple geometry. For example, Laura dealt with
a great variety of membranes of simple geometry: a rectangular membrane with the density
linearly varying in the direction of one of x- and y-axis [1], a composite annular membrane
with density linearly varying in the radial direction using an approximate variational
approach or with the stepped radial density using an exact method [2, 3], and a composite
circular membrane with a central point support [4]. Bambill performed the free vibration
analysis of a composite, doubly connected square membrane using the conformal mapping
approach [5], and Masad studied the analytical method for obtaining the approximate
solution of a rectangular membrane with smoothly varying inhomogeneity [6]. Later,
Wang showed that the membrane with linear density variation among the
non-homogeneous membranes studied by Masad has a closed form exact solution [7].
Furthermore, Cortinetz revealed that there exists an exact solution for a composite
rectangular membrane with the stepped density varying in the direction of the x-axis [8]
(the concerned results were compared with those obtained using the Kantorovich method
[9, 10]).
0022-460X/02/130505#13 $35.00/0 � 2002 Elsevier Science Ltd.
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Although many engineering applications have dealt with various non-homogeneous
membranes as reviewed above, there commonly exists a limitation where the boundaries of
each homogeneous region in the membrane of interest have to be paralleled with one of the
axes of the co-ordinate system selected. Similarly, this paper deals with a composite
rectangular membrane of which the four edges are paralleled with one of the axes, but the
interface between two homogeneous regions with di!erent surface densities is not paralleled
with any axis and is oblique. Note that this geometric feature di!ers from that of the title
problem studied by Cortinez [8].

The composite membrane considered in this paper has no exact solution and thus
a suitable analytical method for the geometric feature of the composite membrane is proposed
in this study. Case studies for the veri"cation of the present method reveal that the method
gives very accurate and rapidly converging natural frequencies, and also that the mode
shapes found using this method are in good agreement with those obtained by the FEM, in
spite of the amount of numerical calculation being much smaller than with the FEM.

2. THEORETICAL FORMULATION

2.1. ASSUMPTION OF SOLUTIONS

As shown in Figure 1, consider a composite rectangular membrane composed of two
homogeneous regions D

�
and D

��
, of which the common boundary �

�
is oblique against the

>-axis. As the initial stage of theoretical development for the free vibration analysis of the
composite membrane, two semi-in"nite membranes are imagined as shown in Figure 2
where each semi-in"nite membrane has "xed boundary condition at the corresponding
three edges. In Figure 2, the "rst semi-in"nite membrane "xed at X">"0 and >"b is
considered to depict the transverse vibration of the region D

�
. Similarly, the second "xed at

X"a and >"0"b is considered for the region D
��
.

The eigen"eld of the composite membrane for transverse vibration is assumed by
employing the transverse displacement functions=

�
(X, >) and=

��
(X, >), respectively, for

the two homogeneous regions. Using the method of variable separation
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�
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Figure 1. Composite rectangular membrane with the oblique interface between the subdomains D
�
and D

��
.
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Figure 2. Two semi-in"nite membranes with "xed edges at (a) X"0, >"0 and >"b; (b) X"a, >"0 and
>"b.

FREE VIBRATION ANALYSIS OF COMPOSITE RECTANGULAR MEMBRANES 507
and substituting each of them into the governing di!erential equation

� �=#k�="0, (3)

where k denotes the wavenumber, one can obtain the general solutions

=
�
(X, >)"(A��� sin k���

�
X#B��� cos k���

�
X )(C��� sin k���

�
>#D��� cos k���

�
>), (4)

=
��
(X, > )"(A���� sin k����

�
X#B���� cos k����

�
X )(C���� sin k����

�
>#D���� cos k����

�
>), (5)

where (k���
�
)�#(k���

�
)�"(k���)� and (k����

�
)�#(k����

�
)�"(k���� )�.

If the boundary conditions for each semi-in"nite membrane described in the above

=
�
(X"0)"=

�
(>"0)"=

�
(>"b)"0, (6)

=
��
(X"a)"=

��
(>"0)"=

��
(>"b)"0 (7)

are applied to the general solutions, equations (4, 5) lead to

=
�
"

�
�

���

A���
�
sin[k���X] sin[m�>/b], (8)

=
��
"

�
�
���

A����
�

sin[k����(a!X)] sin[n�>/b], (9)
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where k���"�(�/c
�
)�!(m�/b)� and k����"�(�/c

��
)�!(n�/b)� denote the wavenumbers

for each semi-in"nite membrane, expressed by the angular frequency �"2� f, and the

speed of wave propagation, c
�
"�¹/�

�
, using the tension per unit length ¹ and the surface

density given by �
�
or �

��
. It should be noted that the assumed functions satisfy the

Helmholtz equation (3) and the "xed boundary conditions (6, 7) at all edges except the
common boundary.

In order for the assumed functions to become eigensolutions for the free vibration of the
composite membrane, it is required that =

�
(x, y) and =

��
(x, y) satisfy the compatibility

condition, that is the two functions must satisfy the conditions of continuity in displacement
and slope at the common boundary given between the co-ordinates (a

�
, 0) and (a

�
, b): i.e.,

=
�
��

�
"=

��
��

�
, �=

�
/�n ��

�
"�=

��
/�n ��

�
� (10, 11)

where n represents the normal direction from the common boundary.

2.2. SYSTEM MATRIX FROM THE COMPATIBILITY CONDITIONS

It has been well known that there is no exact solution in the case of the composite
rectangular membrane with the oblique common boundary as shown in Figure 1. If the
common boundary is paralleled with the >-axis, this membrane will be solved by the exact
method using the compatibility conditions at the common boundary or by the Kantorovich
method using the variation technique [6]. However, there has not been any research
published so far that has analytically solved composite rectangular membranes with such
an oblique common boundary as in the title problem. The reason is that, when the global
co-ordinates (X, >) are used, the geometric variables X and > are both varied along the
oblique common boundary.

In this section, a co-ordinate transformation is "rst performed to overcome the above
problem. Correspondingly, the relationship of the local co-ordinate system (x, y) to the
global co-ordinate system (X, > ), shown in Figure 1, is given by

�
X

>�"�
p !q

p q � �
x

y�#�
a
�
0 � , (12)

where p"cos � and q"sin � (the angle � is indicated in Figure 1). Substituting the
co-ordinate relationship,

X"px!qy#a
�
, >"qx#py, (13, 14)

which are obtained from equation (12), into the equations (8, 9) leads to

=
�
(x, y)"

�
�

���

A���
�
sin[k���(px!qy#a

�
)] sin[m�(qx#py)/b], (15)

=
��
(x, y)"

�
�
���

A����
�

sin[k���� (a!px#qy!a
�
)] sin[n�(qx#py)/b]. (16)

2.2.1. Condition of continuity in displacement

Prior to considering the conditions of continuity at the common boundary, it is
important to note the physical concept associated with the harmonic transverse vibration of
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the composite membrane. Concretely speaking, since the composite membrane
harmonically vibrates at the entire region including the common boundary at any excitation
frequency, the transverse displacement shape ; (x, y"0) created along the common
boundary may be expressed by linearly superposing the bases sin�x/¸,
sin 2�x/¸,2, sinN�x/¸ where ¸ is the length of the common boundary: i.e.,

;(x, y"0)"
�
�
���

B
�
sin i�x/¸. (17)

Using equation (17), equation (10) may be expressed as

;(x, y"0)"=
�
(x, y"0), ; (x, y"0)"=

��
(x, y"0). (18, 19)

Substituting equations (15, 17) into equations (18, 19) gives the following explicit results
expressed in terms of the single local co-ordinate variable x:

�
�
���

B
�
sin i�x/¸"

�
�

���

A���
�
sin[k���(px#a

�
)] sin[m�x/¸], (20)

�
�
���

B
�
sin i�x/¸"

�
�
���

A����
�

sin[k����(a!px!a
�
)] sin[n�x/¸]. (21)

It should be noted in the current step that equations (20, 21) do not give complete forms
because the geometric variable x is included in the equations.

In order to eliminate x from the equations, the sth basis sin s�x/¸ is multiplied to both
sides of the equations and the integration procedure from 0 to ¸ is performed along the
common boundary. Then, equations (20, 21) lead to, respectively,

B
�
"¸/2

�
�

���

SM���
��
A���

�
, s"1, 2,2 ,N, (22)

B
�
"¸/2

�
�
���

SM����
��
A����

�
, s"1, 2,2 ,N, (23)

where SM���
��

and SM����
��

are given by

SM���
��

"�
	

	

sin[k��� (px#a
�
)] sin[m�x/¸] sin[s�x/¸] dx, (24)

SM����
��

"�
	

	

sin[k���� (px#a
�
)] sin[n�x/¸] sin[s�x/¸] dx. (25)

Since equations (22, 23) are identical for all s, N linear equations are obtained as

�
���

SM���
��
A���

�
" �

���

SM����
��
A����

�
, s"1, 2, 2 ,N, (26)

which may be "nally rewritten in the simple matrix form

SM(I)A(I)
"SM(II)A(II). (27)
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2.2.2. Condition of continuity in slope

In this section, the condition of continuity in slope at the common boundary is
considered in the same manner as in section 2.2.1. First, a slope variation function;

�
along

the common boundary is assumed as

;
�
(x, y"0)"

�
�
���

C
�
sin i�x/¸. (28)

Using equation (28), equation (11) may be expressed as

;
�
(x, y"0)"�=

�
(x, y"0)/�n, ;

�
(x, y"0)"�=

��
(x, y"0)/�n. (29, 30)

Substituting equations (15, 16) into equations (29, 30) gives

�
�
���

C
�
sin i�x/¸"

�
�y �

�
�

���

A���
�
sin[k���(px!qy#a

�
)] sin[m� (qx#py)/b]�

��	

, (31)

�
�
���

C
�
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�
�y �

�
�
���

A����
�

sin[k����(a!px#qy!a
�
)] sin[n�(qx#py)/b]�

��	

. (32)

In order to eliminate the geometric variable, the sth basis sin s�x/¸ is multiplied to both
sides of equations (31, 32), and the integration procedure along the common boundary is
carried out. Then, one obtains

C
�
"¸/2

�
�

���

<M���
��
A���

�
, s"1, 2,2 ,N, (33)

C
�
"¸/2

�
�
���

<M����
��
A����

�
, s"1, 2,2 ,N, (34)

which leads to the N linear equations

�
�

���

<M���
��
A���

�
"

�
�
���

<M����
��
A����

�
, s"1, 2,2 ,N, (35)

where <M���
��

and <M����
��

are given by

<M���
��

"�
	

	

�!qk��� cos[k���(px#a
�
)] sin[m�x/¸]

#(m�p/b) sin[k��� (px#a
�
)] cos[m�x/¸]	 sin s�xdx, (36)

<M����
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�qk���� cos[k���� (a!px!l )] sin[n�x/¸]

#(n�p/b) sin[k���� (a!px!a
�
)] cos[n�x/¸]	 sin s�x dx. (37)
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Finally, one obtains the simple matrix form from equation (35) as follows.

VM(I)A(I)
"VM(II)A(II). (38)

Matrix equations (27, 38) developed from the compatibility conditions may take the form
of a single matrix equation:

SM ( f )A"0, (39)

where the square system matrix SM( f ) of the order 2N and the unknown coe$cient vector
A are, respectively, given by

SM ( f )"�
SM(I)

!SM(II)

VM(I)
!VM(II)� , A"�

A(I)

A(II)� . (40, 41)

On the other hand, the natural frequencies of the composite membrane may be found from
the non-trivial condition that the solution of equation (39) should be non-trivial: i.e., the
roots of the determinant equation det[SM( f )]"0 correspond to the natural frequencies.
In addition, the ith mode shape for the ith natural frequency, f

�
, may be plotted

from equations (8, 9). For this purpose, the ith eigenvector, which corresponds to the
unknown coe$cient vector obtained from equation (39) when f"f

�
, is substituted into

equations (8, 9).

3. CASE STUDIES

The validity of the proposed method is veri"ed through numerical tests of composite
rectangular membranes, of which the dimensions are given by a"1)8, b"1)0, a

�
"1)0 and

a
�
"0)7m (see Figure 1). The values of surface density of the two homogeneous regions

D
�
andD

��
are given by �

�
"1)293�10
�kg/m� and �

��
"2�

�
. Prior to the veri"cation of the

composite membrane of the above feature, a homogeneous membrane with the same
dimensions as the composite membrane but with the homogeneous surface density
�
�
"�

��
"1)293�10
�kg/m� is "rst solved for a comparison of the result obtained from the

proposed method with the exact solution.

3.1. HOMOGENEOUS RECTANGULAR MEMBRANE

A simple case where �
��

is identical to �
�
(�"�

�
"�

��
"1)293�10
�kg/m� ) is "rst

considered in the section. Since the exact natural frequencies of the homogeneous
rectangular membrane are easily obtained in this case, the natural frequencies calculated by
the proposed method can be compared with the exact natural frequencies. The accuracy
of the proposed method may be veri"ed from the comparison. On the other hand, since
the current rectangular membrane has the uniform surface density, �"1)293�10
�kg/m�,
the wavenumber throughout the entire region of the membrane is de"ned as

k"�(�/c)�!(m�/b)� where c"�¹/� and �"2� f.
Logarithmic values of det[SM( f )] for N"2, 3, 4, and 5 are plotted as a function of the

frequency f in Figure 3 where the values of f corresponding to the troughs represent the
singular values of the system matrix SM( f ). The singular values are labelled as f

��
, f

��
, f

�
,

f
�
,2 , f

�	
in Figure 3. Of the singular values, f

�
, f

�
,2 , f

�	
correspond to the natural
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frequencies of the homogeneous membrane, and f
��

and f
��

represent the cut-o! frequencies
within the frequency range, 150}550Hz. Note that the cut-o! frequencies can also be

calculated from k"�(�/c)�!(m�/b)�"0.
The reason why the two cut-o! frequencies are included in the singular values of SM ( f )

in Figure 3 is that the transverse displacements=
�
and=

��
have trivial solutions when the

two cut-o! frequencies are substituted into equations (15, 16): i.e., =
�
"=

��
"0 due to

k"k���"k����"0. As a result, the system matrix SM ( f ) becomes singular at the cut-o!
frequencies as well as at the natural frequencies. This fact may be considered to be a weak
point of the proposed method, as additional work is needed so that troughs corresponding
to the cut-o! frequencies can be discriminated from troughs corresponding to the natural
frequencies. Note, however, that the additional work can be successfully executed by

con"rming the cut-o! frequencies using k"�(�/c)�!(m�/b)�"0.
Basically, the proposed method gives both correct natural frequencies and incorrect ones

(the cut-o! frequencies). The incorrect natural frequencies result from the fact that the
system matrix becomes singular at particular frequencies, which satisfy the equation

k"�(�/c)�!(m�/b)�"0 (the particular frequencies are called the cut-o! frequencies).
From this fact, troughs corresponding to the cut-o! frequencies in Figure 3 can be
discriminated from those corresponding to the natural frequencies of the membrane, by

previously con"rming the cut-o! frequencies from k"�(�/c)�!(m�/b)�"0.
In Table 1, the natural frequencies obtained by the proposed method are compared with

the exact frequencies and FEM results. It may be said that the natural frequencies by the
proposed method converge rapidly and accurately to the exact frequencies in the case of
only N"2. Furthermore, the proposed method is more accurate than the FEM results
usingN


�

"800 when the present results and the FEM results are compared with the exact

natural frequencies.

3.2. NON-HOMOGENEOUS RECTANGULAR MEMBRANE

In this section, we consider the composite rectangular membrane of which the values
of surface density of the two subdomains D

�
and D

��
are, respectively, given by



TABLE 1

Comparison of the natural frequencies of the homogeneous rectangular membrane obtained by the proposed method, the exact method, and FEM

Proposed method FEM
Natural Exact value

frequencies N"2 N"3 N"4 N"5 (Mode shape) N

�


"800 N

�


"450 N

�


"200 N

�


"50

f
�

195)01 195)01 195)01 195)01 195)01 (1,1) 195)18 195)32 195)70 197)76
f
�

254)83 254)83 254)83 254)83 254)83 (2,1) 255)12 255)35 256)01 259)55
f
�

331)34 331)34 331)34 331)34 331)34 (3,1) 332)07 332)64 334)28 343)15
f


353)85 353)85 353)85 353)85 353)85 (1,2) 355)22 356)29 359)35 375)92
f
�

390)02 390)02 390)02 390)02 390)02 (2,2) 391)42 392)51 395)63 412)48
f
�

415)41 415)41 415)41 415)41 415)41 (4,1) 417)03 418)29 421)90 441)29
f
�

443)81 443)81 443)81 443)81 443)81 (3,2) 445)47 446)77 450)46 470)30
f
�

503)28 503)28 503)28 503)28 503)28 (5,1) 506)46 508)95 516)08 546)55
f
�

509)66 509)66 509)66 509)66 509)66 (4,2) 512)02 513)86 519)11 554)74
f
�	

None 520)11 520)11 520)11 520)11 (1,3) 524)80 528)46 538)95 592)56
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Figure 4. Determinant of the system matrix versus frequency for the composite rectangular membrane when
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TABLE 2

Comparison of the natural frequencies of the composite rectangular membrane obtained by the
proposed method and FEM

Proposed method FEM
Natural

frequencies N"2 N"3 N"4 N"6 N"8 N

�


"800 N

�


"450 N

�


"200 N

�


"50

f
�

150)2 150)2 150)2 150)2 150)2 150)3 150)4 150)8 152)5
f
�

215)2 215)2 215)2 215)2 215)2 215)5 215)8 216)6 220)4
f
�

262)6 262)9 262)9 262)9 262)9 263)9 264)6 266)8 278)6
f


271)6 271)6 271)6 271)6 271)6 272)3 272)8 274)2 282)0
f
�

317)2 317)0 317)0 317)0 317)0 318)3 319)3 322)2 337)9
f
�

342)2 342)1 342)1 342)1 342)1 343)8 345)0 348)7 367)4
f
�

None 375)5 375)7 375)7 375)7 377)9 379)5 383)8 404)0
f
�

379)0 380)0 380)1 380)2 380)2 383)0 385)4 392)4 429)8
f
�

414)9 414)1 414)1 414)1 414)1 416)9 419)1 425)2 454)5
f
�	

420)0 418)2 418)1 418)1 418)1 421)0 423)0 428)7 458)8
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�
�
"1)293�10
�kg/m� and �

��
"2�

�
. In the same manner as in the previous section, by

plotting logarithmic values of det[SM ( f )]with respect to f (See Figure 4), the natural
frequencies of the composite membrane are obtained from the troughs as shown in Figure 4.
Note that, among the troughs, some troughs are related to the cut-o! frequencies and have
been formed because k���"0 and k����"0. The troughs corresponding to the cut-o!
frequencies are represented by f ���

��
, f ���

��
, f ����

��
, f ����

��
and f ����

��
, as shown in Figure 4.

Table 2 shows the natural frequencies obtained from the proposed method and FEM
(SYSNOISE). As can be seen in Table 2, the proposed method yields more rapidly
converging results in spite of much less computational e!ort than in the FEM results.
Although this membrane has no exact solution, the accuracy and e!ectiveness of the
proposed method may be veri"ed from the comparison between the present results for
N"8 and the FEM results for N


�

"800. As can be seen in Table 2, the "rst six natural

frequencies obtained by the proposed method with only N"3 have already converged to
the corresponding steady values and have an extremely small amount of error compared
with the FEM results for N


�

"800.



Figure 5. Mode shapes of the composite rectangular membrane obtained by the present method when N"3:
(a)}( j) correspond to 1st}10th modes respectively.

FREE VIBRATION ANALYSIS OF COMPOSITE RECTANGULAR MEMBRANES 515
Interestingly, the seventh natural frequency cannot be found for N"2. The reason may
be due to the fact that the corresponding mode has many nodal points along the common
boundary compared with the other modes (See Figure 5(g)). It may, therefore, be imagined
that a larger value of N is required to describe displacement variations along the common
boundary. The mode shapes of the composite membrane obtained by the proposed method



Figure 6. Mode shapes of the composite rectangular membrane obtained by FEM when N

�


"800: (a)}( j)
correspond to 1st}10th modes respectively.
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for N"3 are shown in Figure 5. It may be said that the mode shapes are very similar to
those computed by the FEM, which are shown in Figure 6.
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4. CONCLUSION

A simple and accurate method for determining the natural frequencies and mode shapes
of composite rectangular membranes with the oblique interface has been described. The
method yields very accurate and rapidly converging results even when a small number of
sine series functions are used. Furthermore, even when a large number of sine series
functions are used for predicting higher order modes, the method gives steady natural
frequencies and mode shapes over all modes including lower order modes.
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